Lecture 10

Terrestrial infrared radiative processes. Part 3:

Absorption band models. Curtis-Godson Approximation.

Objectives:

- 1. Concept of the equivalent width. Limits of the strong and weak lines.
- 2. Absorption-band models: Regular (Elsasser) band model and Statistical (Goody) band model.
- 3. Curtis-Godson Approximation for inhomogeneous path.

Required reading:

L02: 4.4

Additional/Advanced reading:

G&Y: 4.5;4.6

1. Concept of the equivalent width. Limits of the strong and weak lines.

First, let's consider a homogeneous atmospheric layer (i.e., the spectral absorption coefficient k_{ν} does not depend on path length).

Recall Lecture 8 where we have defined the **spectral transmission function** for a band of a width Δv as

$$T_{\overline{v}}(u) = \frac{1}{\Delta v} \int_{\Delta v} \exp(-k_v u) dv = \frac{1}{\Delta v} \int_{\Delta v} \exp(-Sf(v - v_0)u) dv$$

and spectral absorptance

$$A_{\bar{v}}(u) = 1 - T_{\bar{v}}(u) = \frac{1}{\Delta v} \int_{\Delta v} (1 - \exp(-k_v u)) dv$$

Equivalent width is defined as

$$W(u) = A_{\overline{\nu}} \Delta \nu = \int_{\Delta \nu} [1 - \exp(-k_{\nu}u)] d\nu$$
 where W is in units of wavenumber (cm⁻¹).

• The equivalent width is the width of a fully absorbing (A=1) rectangular-shape line.

Figure 10.1 Schematic illustration of the equivalent width. The dotted rectangular area is equal to the hatched area and represents the total energy absorbed in the line.

Equivalent width of Lorentz profile

Using $k_v = \mathbf{S} f(\mathbf{v} - \mathbf{v}_0)$ and the Lorentz profile of a line, we have

$$A_{\overline{v}}(u) = \frac{1}{\Delta v} \int_{\Delta v} (1 - \exp\left(-\frac{S\alpha u / \pi}{(v - v_0)^2 + \alpha^2}\right)) dv$$
 [10.2]

This integral can be expressed in term of the Ladendurg and Reiche function, L(x), as

$$W = A_{\overline{\nu}} \Delta \nu = 2\pi\alpha L(x)$$
 [10.3]

where $x = Su/2\pi\alpha$,

S is the line intensity, and u is the absorber amount.

NOTE: The Ladendurg and Reiche function L(x) in Eq.[10.3] is given by the modified Bessel functions of the first kind of order n: $L(x) = x \exp(-x)[I_0(x) + I_1(x)]$, where

$$I_n(x) = i^{-n} J_n(ix)$$
 and $J_n(x) = \frac{i^{-n}}{\pi} \int_0^{\pi} \cos(n\theta) \exp(ix \cos(n\theta)) d\theta$

For small x: L(x) is linear with its asymptotic expansion: L(x)=x[1-...]

For large x: L(x) is proportional to a square root of x: $L(x) = (2x/\pi)^{1/2}[1-...]$

<u>Case of weak line absorption</u>: either k_v or u is small => $k_v u << 1$

Using the asymptotic of L(x) for small x, we have

$$A_{\overline{v}}(u) = \frac{W}{\Delta v} = 2\pi\alpha L(x) / \Delta v = 2\pi\alpha \frac{Su}{2\pi\alpha \Delta v} = \frac{Su}{\Delta v}$$

Thus

$$A_{\overline{v}}(u) = \frac{Su}{\Delta v}$$
 is called Linear absorption law. [10.4]

Case of strong line absorption: $Su/\pi\alpha >> 1$

Using the asymptotic of L(x) for large x, we have

$$A_{\overline{v}}(u) = \frac{W}{\Delta v} = 2\pi\alpha L(x) / \Delta v = 2\pi\alpha \sqrt{\frac{2x}{\pi}} / \Delta v =$$

$$= 2\pi\alpha \sqrt{\frac{2Su}{\pi 2\pi\alpha}} / \Delta v = 2\sqrt{Su\alpha} / \Delta v$$

Thus

$$A_{\overline{\nu}}(u) = 2 \frac{\sqrt{Su \, \alpha}}{\Delta \, \nu}$$
 is called Square root absorption law. [10.5]

2. Absorption band models.

Band is a spectral interval of a width Δv which is small enough to utilize a mean value of the Plank function $B_{\overline{v}}(T)$, but large enough so it consists of several **absorption lines**.

 Absorption band models are introduced to simplify the computation of the spectral transmittance. Some generally available radiative transfer codes (such as MODTRAN) use band models.

NOTE: MODTRAN is a moderate resolution radiative transfer code, which has "fixed-wavenumber" sampling of 1 cm⁻¹ and a nominal resolution of 2 cm⁻¹. See A. Berk, G.P. Anderson, P.K. Acharya, J.H. Chetwynd, L.S. Bernstein, E.P. Shettle, M.W. Matthew, and S.M. Adler-Golden, MODTRAN4 USER'S MANUAL. Air Force Research Laboratory. 2000.

Let's consider a band with several lines. Two main cases can be identified:

- 1) lines have **regular positions**
- 2) lines have **random positions**.

Two main types of band models: **regular** band model and **random** band models.

<u>Regular Elsasser band model</u> consists of an infinite array of Lorentz lines of equal intensity, spaced at equal intervals.

Example: This type of bands is similar to P and Q branches of linear molecules. For example, the spectrum of N_2O in 7.78 μ m band; the spectrum of CO_2 in 15 μ m band.

The **absorption coefficient** of the Elsasser bands is

$$k_{\nu} = \sum_{n=-\infty}^{\infty} \frac{S}{\pi} \frac{\alpha}{(\nu - n\delta)^2 + \alpha^2}$$
 [10.6]

where δ is the line spacing (i.e., the distance in wavenumber domain (cm⁻¹) between the centers of two nearest lines).

Using Eq.[10.6] one can calculate the spectral absorptance as (see derivation in L02 pp139-141)

$$A_{\overline{v}} = erf\left(\frac{\sqrt{\pi S \alpha u}}{\delta}\right)$$
 [10.7]

where $erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-x^2) dx$. Values of erf(x) are available from standard mathematical tables.

Principle of statistical (random) models:

Many spectral bands have random line positions. To approximate this type of bands, various statistical models have been developed.

Example: H₂O 6.3 μm vibrational-rotational band and H₂O rotational band are characterized by random line positions.

Assumptions: n randomly spaced lines with the mean distance δ , so that $\Delta v = n\delta$; lines are independent and have identical shapes, probability density of strength of i'th line is $p(S_i)$. Different p(S) give different models, for instance, Goody and Malkmus.

Strategy: derive mean transmission by multiplying transmission of each line at particular \mathbf{v} , and also integrating over probability distributions of line positions $\mathbf{v_i}$ and line strength S_i for each line.

$$T_{\overline{v}} = \frac{1}{(\Delta v)^{n}} \int_{\Delta v} dv_{1} \dots \int_{\Delta v} dv_{n} \int_{0}^{\infty} p(S_{1}) \exp(-uS_{1}f(v - v_{0,1})) dS_{1} \dots$$

$$\dots \int_{0}^{\infty} p(S_{n}) \exp(-uS_{n}f(v - v_{0,n})) dS_{n} =$$

$$= \prod_{i=1}^{n} \frac{1}{\Delta v} \int_{\Delta v} dv_{i} \int_{0}^{\infty} p(S_{i}) \exp(-uS_{i}f(v - v_{0,i})) dS_{i}$$

NOTE: Above equation uses that if lines in a band are uncorrelated, the multiplication law (see Lecture 8) works for average transmittance:

$$T_{\bar{v},1,2} = T_{\bar{v},1}T_{\bar{v},2}$$

Since in the above equation all integral alike, we have

$$T_{\overline{v}} = \left\{ \frac{1}{(\Delta v)} \int_{\Delta v} dv \int_{0}^{\infty} p(S) \exp(-uSf(v)) dS \right\}^{n} =$$

$$= \left\{ 1 - \frac{1}{\Delta v} \int_{\Delta v} dv \int_{0}^{\infty} p(S) [1 - \exp(-uSf(v))] dS \right\}^{n}$$
[10.8]

The mean equivalent width may be defined as

$$\overline{W} = \int_{0}^{\infty} p(S) \int_{\Delta V} [1 - \exp(-uSf(V))] dV dS$$
 [10.9]

Recalling that $\Delta v = n\delta$, Eq.[10.8] can be rewritten in terms of the **mean equivalent** width giving the mean transmission as

$$T_{\overline{V}} = \left(1 - \frac{1}{n} \left(\frac{\overline{W}}{\delta}\right)\right)^n$$
 [10.10]

Since $\lim_{n\to\infty} (1-\frac{x}{n})^n - > \exp(-x)$, we have

$$T_{\overline{v}} = \exp(-\frac{\overline{W}}{\delta})$$
 [10.11]

NOTE: Single line transmission is **1-W**/ Δv , but for many random lines it is exponential in the mean equivalent width.

Statistical (Goody) band model:

Consider a band consisting of randomly distributed Lorentz lines.

Assuming that the probability distribution of intensities is the **Poisson distribution**

$$p(S) = \overline{S}^{-1} \exp(-S/\overline{S})$$
 [10.12]

where the \overline{S} in the mean intensity.

$$\overline{S} = \int_{0}^{\infty} Sp(S)dS$$

For the Lorentz profile with the mean half-width α , the spectral transmittance can be expressed as

$$T_{\overline{v}} = \exp\left(-\frac{\overline{S}u}{\delta}\left(1 + \frac{\overline{S}u}{\pi\alpha}\right)^{-1/2}\right)$$
 [10.13]

Thus, Eq.[10.13] gives the mean spectral transmittance for the Goody random model as a function of path length, u, and two parameters $\frac{\overline{S}}{\delta}$ and $\frac{\overline{S}}{\alpha\pi}$.

Malkmus model: (has a higher probability of weak lines) assumes that the probability distribution of intensities is

$$p(S) = S^{-1} \exp(-S / \overline{S})$$

and, for a Lorentz line shape, the mean transmittance is

$$T_{\overline{v}} = \exp\left(-\frac{\pi\alpha}{2\delta} \left(\left(1 + \frac{4\overline{S}u}{\pi\alpha}\right)^{1/2} - 1\right) \right)$$
 [10.14]

Weak line limit:

For
$$\frac{\overline{S}u}{\pi\alpha} \ll 1$$
, Eq.[10.13] gives

$$T_{\overline{v}} = \exp\left(-\frac{\overline{S}u}{\delta}\right)$$
 [10.15]

Strong line limit:

For
$$\frac{\overline{S}u}{\pi\alpha} >> 1$$
, Eqs.[10.13] and [10.14] give

$$T_{\overline{v}} = \exp\left(-\frac{\sqrt{\pi\alpha\overline{S}u}}{\delta}\right)$$
 [10.16]

3. Curtis-Godson Approximation for inhomogeneous path.

All discussion above was for homogeneous path because band parameters are for one pressure and temperature. In real atmosphere of varying T and P some adjustments of the band models are needed to account for **inhomogeneous path** when

$$\tau = \int_{u} k_{\nu}(p(u), T(u)) du$$

Strategy: reduce the radiative transfer problem to that of homogeneous path with some sort of averaged values of u*, T* and p*, so that optical depth can be computed accurately.

One-parameter scaling approximation:

Find an equivalent path u^* at fixed reference T_r and p_r that results in the band model having the correct transmission.

Match optical depth for line wings (centers saturated):

$$\sum_{i} \frac{u * S_{i}(T)\alpha_{i}(p_{r,T_{i}})}{\pi(v - v_{o,i})^{2}} = \int_{u} \sum_{i} \frac{u S_{i}(T)\alpha(p,T)}{(v - v_{o,i})^{2}} du$$

Re-writing the half-width, α , as

$$\alpha(P,T) = \alpha(p_r,T_r) \frac{P}{P_r} \left(\frac{T_r}{T}\right)^n$$

We have

$$u^* = \int_{u} \left(\frac{p}{p_r}\right) \left(\frac{T_r}{T}\right)^n \rho_a ds$$
 [10.17]

and thus

$$\tau_{v} = k_{v} (p_{r}, T_{r}) u^{*}$$
 [10.18]

Two-parameter scaling approximation (Curtis-Godson approximation):

More accurate band transmission is obtained with the two-parameter approximation.

Want to find optical depth as

$$\tau = \int_{u} k_{v}(p,T) du = k_{v}(p^{*},T^{*})u$$
 [10.19]

Using Lorentz profile, we have

$$k_{\nu}(p^*, T^*) = \sum_{i} \widetilde{S}_{i} \widetilde{f}_{\nu, i} = \sum_{i} \frac{\widetilde{S}_{i}}{\pi} \frac{\widetilde{\alpha}_{i}}{(\nu - \nu_{0, i})^2 + \widetilde{\alpha}_{i}^2}$$

and, thus, two-adjusted parameter \widetilde{S} and \widetilde{lpha} .

They can be introduced as

$$\widetilde{\overline{S}} = \int_{0}^{u} \overline{S}(T) du / u$$

$$\widetilde{\alpha} = \int_{0}^{u} \overline{S}(T)\alpha(p,T)du / \int_{0}^{u} \overline{S}(T)du$$